関西医科大学物理2013年第3問
次の文章を読み、以下の問に答えよ。
近づいてくる救急車のサイレンの音は高く聞こえ、遠ざかると低く聞こえる。このような現象をドップラー効果と呼んでいる。ドップラー効果を利用した速度計がスピードガンである。
動いているボールの前で、周波数$f_0$の波を発生させる波源が点$\text{S}$に静止している。波の速さを$c$とし、ボールが一定の速さ$v$で波源に近づいているとき、点$\text{S}$にある受信器で受信した波の周波数を$f_R$とする。
まず、1秒間にボールが受ける波の数を考える。図のように、ボールが点$\text{A}_0$で受けた波は、その1秒後に距離(ア)だけ進んで点$\text{B}$に到達する。この1秒間にボールは距離(イ)だけ進んで点$\text{A}$に到着する。したがって、この1秒間にボールに到達した波は、距離(ウ)の間に存在する。点Sにある波源で発生した波の波長は(エ)であるので、この1秒間にボールに到達した波の数は、(オ)と表される。
一方、点$\text{A}_0$のボールで反射した波は、1秒後には距離(ア)だけ進み点$\text{B}’$に到達する。この1秒間にボールは距離(イ)だけ進んで点$\text{A}$に到着する。したがって、この1秒間にボールで反射した波は、距離(カ)の間に存在する。
これより、点$\text{S}$にある受信器で観測される波の波長は(キ)となり、$f_R$は(ク)となる。よって、$f_0$に対する$f_R$の増加量$\Delta f$は(ケ)となる。$c\geqq v$である場合、増加量$\Delta f$は(コ)と近似できるので、$\Delta f$を計測することによりボールの速さ$v$は簡単に求めることができる。
- 問1 アからコに適当な文字、式等を入れよ。
- 問2 波源として周波数$10.525\times 10^9$[Hz]のマイクロ波を用いたスピードガンでボールの速度を測定したところ、$\Delta f=1684$[Hz]であった。ボールの速さを求めよ。必要に応じ、大気中での音速$340$[m/s]、光速$3\times 10^8$[m/s]を用いてもよい。