慶應義塾大学数学2012年第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい。
- (1) $0\leqq\alpha\lt\beta\leqq\dfrac{\pi}{2}$かつ$R\gt0$とする。極座標$(r,\theta)$に関する条件 \[0\leqq{r}\leqq{R},~\alpha\leqq\theta\leqq\beta\] により定まる図形を$x$軸のまわりに回転させて得られる立体の体積を$T$とする。$T$を$\alpha$、$\beta$、$R$を用いた式で表すと \[T=\fbox{ア}\] である。
- (2) 極方程式$r=f(\theta)~(0\leqq\theta\leqq\alpha)$で表される曲線$C$と、$\theta=\alpha$で表される直線$l$および$x$軸の正の部分で囲まれた図形を$S$とする。ただし$0\lt\alpha\lt\dfrac{\pi}{2}$とし、関数$f(\theta)$は連続かつ$f(\theta)\gt0$をみたし、$0\leqq\theta\leqq\alpha $において増加または減少または定数とする。
$S$を$x$軸のまわりに回転させて得られる立体の体積を$V(\alpha)$とすると \[\dfrac{d}{d\alpha}V(\alpha)=\fbox{イ}\] であり、したがって \[V(\alpha)=\fbox{ウ}\] である。また$S$を直線$l$のまわりに回転させて得られる立体の体積を$W(\alpha)$とすると \[W(\alpha)=\fbox{エ}\] である。 - (3) (2)において$f(\theta)=\sqrt[3]{\cos\theta}$とするとき$V\left(\dfrac{\pi}{4}\right)$、$W\left(\dfrac{\pi}{4}\right)$の値を求めると \[V\left(\dfrac{\pi}{4}\right)=\fbox{オ},~W\left(\dfrac{\pi}{4}\right)=\fbox{カ}\] である。